Ф-Рабочая программа дисциплины

УТВЕРЖДЕНО

решением Ученого совета Института медицины, экологии и физической культуры протокол № 8/259

подпись, раси

/ В.В. Машин/ (подпись, расшифровка подписи) от «17» апреля 2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина	Физиология растений
Факультет	Экологический
Кафедра	Биологии, экологии и природопользования
Курс	2

Направление (специальность): 06.03.01 Биология (бакалавриат)

(код направления (специальности), полное наименование)

Направленность (профиль/специализация): Биоинжиниринг

Дата введения в учебный процесс УлГУ: «01» сентября 2024 г.

Программа актуализирована на заседании кафедры: протокол № _____ от ____ 20 ___ г. Программа актуализирована на заседании кафедры: протокол № _____ от ____ 20 ___ г. Программа актуализирована на заседании кафедры: протокол № _____ от ____ 20 ___ г.

Сведения о разработчиках:

ФИО	Кафедра	Должность,
Ψ110	Кафедра	ученая степень, звание
Рассадина Екатерина	Биологии, экологии и	Доцент, к.б.н.
Владимировна	природопользования	

СОГЛАСОВАНО				
Заведующий выпускающей кафедрой				
биологии, экологии и природопользования				
/ <u>Слесарев С.М.</u> / <i>Подпись</i> « <u>18</u> » <u>мая</u> 20 <u>22</u> г.				

Форма А Страница 1 из 22

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель освоения дисциплины — дать студентам современные представления о природе основных физиолого-биохимических процессах зеленого растения, механизмах их регулирования на разных уровнях организации растительного организма и основных закономерностях взаимосвязи с окружающей средой.

Задачи освоения дисциплины:

- дать современное представление о физиологических процессах в зеленом растении (фотосинтез, дыхание, водообмен, минеральное питание, гормональная система, рост и развитие, устойчивость и адаптация) механизмах их регуляции и интеграции;
 - рассмотреть общие закономерности взаимодействия растений со средой;
 - раскрыть эволюционные аспекты становления функций растительного организма;
- показать методологию физиологии растений как науки исследующей разные уровни организации функциональных систем. Познакомить студентов с некоторыми классическими и современными экспериментальными методами, и подходами в изучении физиологических процессов;
- показать взаимодействие и связи физиологии растений с другими науками (химия, физика, генетика, молекулярная биология);
- раскрыть роль и перспективы физиологии растений в решении задач практического земледелия, растениеводства, генетики и селекции, биотехнологии.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Физиология растений» включена в базовую часть профессионального цикла дисциплин Федерального государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки бакалавров 06.03.01. «Биология» (Б1.О.31).

Дисциплина осваивается на втором курсе, в четвертом семестре.

Дисциплина параллельно реализует компетенцию ОПК-2 с физиологией животных.

Дисциплина служит основой для освоения последующих учебных дисциплин: физиологии животных, физиологии высшей нервной деятельности, иммунологии; а также практики по профилю профессиональной деятельности, научно-исследовательской работы.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Изучение дисциплины «Физиология растений» в рамках освоения образовательной программы направлено на формирование у обучающихся следующих профессиональных компетенций:

Код и наименование реализуемой компетенции	Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций
ОПК-2	Знать: структурно-функциональную организацию
Способен применять принципы	биологических объектов.
структурно-функциональной	Уметь: применять принципы структурной и
организации, использовать	функциональной организации биологических
физиологические,	объектов.

Форма А Страница 2 из 22

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания. **Владеть:** владеть основными физиологическими, цитологическими, биохимическими, биофизическими методами анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания.

4. ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ

4.1. Объем дисциплины в зачетных единицах (всего): 2 ЗЕТ.

4.2. По видам учебной работы (в часах):

	Количество часов			
Вид учебной работы	Распо но низии	В т.ч. по семестрам		
	Всего по плану	4		
Контактная работа обучающихся с	32	32		
преподавателем				
Аудиторные занятия:	32	32		
Лекции	16	16		
практические и семинарские занятия	Не предусмотрены	Не предусмотрены		
лабораторные работы (лабораторный	16	16		
практикум)				
Самостоятельная работа	40	40		
Текущий контроль (контрольная	Тестирование,	Тестирование,		
работа, тесты, рефераты)	устный опрос	устный опрос		
Курсовая работа	Не предусмотрена	Не предусмотрена		
Виды промежуточной аттестации	зачет	зачет		
(экзамен, зачет)				
Всего часов по дисциплине	72	72		

^{*}Интерактивные формы занятий

4.3. Содержание дисциплины. Распределение часов по темам и видам учебной работы:

Форма обучения: очная

				Виды уч	чебных занят	тий	
	Bcer o	Аудиторные занятия			2	Самост	Формы
Название разделов, тем		лекци и	практич еские занятия, семинар	лабора торная работа	Занятия в интеракти вной форме	оятель ная работа	контроля
		Разде	л 1. Обмен	веществ	растений		
Тема 1. Водный обмен растительной клетки и	9	2	-	2	-	5	Тестировани е, устный опрос

Форма А Страница 3 из 22

^{**}В случае необходимости использования в учебном процессе частично/исключительно дистанционных образовательных технологий в таблице через слеш указывается количество часов работы ППС с обучающимися для проведения занятий в дистанционном формате с применением электронного обучения.

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

растения							
Тема 2. Структурная организация, экология и энергетика фотосинтеза	9	2	-	2	-	5	Тестировани е, устный опрос
Тема 3. Химизм и энергетика дыхания	9	2	-	2	-	5	Тестировани е, устный опрос
	<u>аздел 2.</u>	. Минера	льное пита	ние, рост	и развитие р	астений	
Тема 4. Физиологическа я роль элементов минерального питания	9	2	-	2	-	5	Тестировани е, устный опрос
Тема 5. Рост и его закономерности	9	2	-	2	-	5	Тестировани е, устный опрос
Тема 6. Онтогенез и его регуляция	9	2	-	2	-	5	Тестировани е, устный опрос
	Pa	здел 3. А,	даптации и	устойчин	вость растені	<u>ий</u>	
Тема 7. Устойчивость растений и ее диагностика	9	2	-	2	-	5	Тестировани е, устный опрос
Тема 8. Устойчивость растений к абиотическим и биотическим факторам среды	9	2	-	2	-	5	Тестировани е, устный опрос
Всего	72	16	-	16	-	40	

Форма А Страница 4 из 22

Ф-Рабочая программа дисциплины

5. СОДЕРЖАНИЕ КУРСА

Раздел 1. Обмен веществ растений

Тема 1. Водный обмен растительной клетки и растения

Предмет, задачи и место физиологии растений в системе профессиональных дисциплин. Методы физиологии растений. Изучение процессов жизнедеятельности на разных уровнях организации. Особенности физиологии древесных растений. Свойства, состояние воды в клетке и значение в жизни растений. Термодинамика водного обмена. Клетка как осмотическая система; роль вакуоли и клеточной стенки. Генетическая регуляция образования и функционирование аквапоринов.

Двигатели водного тока в растении. Корневое давление, его природа, зависимость от внутренних и внешних условий. Биологическое значение транспирации. Лист как орган транспирации. Зависимость транспирации от внешних условий, ее суточный ход. Устьичное и внеустьичное регулирование транспирации. Значение устьиц в регулировании газообмена растений. Показатели и пути повышения эффективности использования воды растениями.

Тема 2. Структурная организация, экология и энергетика фотосинтеза.

Роль фотосинтеза в жизни растений. Лист как оптическая система. Химический состав, структура и функции хлоропластов. Фотосинтетические пигменты, их свойства и биосинтез. Значение работ К.А. Тимирязева в изучении роли спектрального состава света в фотосинтезе. Световая и тем-новая фазы фотосинтеза. Продукты темновой фазы фотосинтеза. Транспорт ассимилятов в растении.

Показатели, характеризующие фотосинтез. Зависимость фотосинтеза от внутренних и внешних факторов. Взаимодействие факторов при фотосинтезе. Дневной ход и сезонные изменения фотосинтеза. Светолюбивые и теневыносливые растения. Использование знаний об отношении растений к свету в практике. Связь фотосинтеза с продуктивностью растения. Светокультура растений.

Тема 3. Химизм и энергетика дыхания.

Роль дыхания в жизни растений. Оксидоредуктазы, их химическая природа и функции. Митохондрии как центр аэробного дыхания, связь структуры и локализации с функциональной активностью клетки. Химизм дыхания. Окислительное фосфорилирование. Энергетика дыхания. Использование энергии, высвобождающейся в процессе дыхания, на физиологические процессы в растительном организме.

Зависимость интенсивности дыхания от внутренних и внешних факторов. Дыхательный коэффициент и его зависимость от внутренних и внешних условий. Дыхание роста и дыхание поддержания, их зависимость от условий. Роль дыхания в азотном обмене и процессах вторичного метаболизма. Фотосинтез и дыхание как элементы продукционного процесса.

Раздел 2. Минеральное питание, рост и развитие растений Тема 4. Физиологическая роль элементов минерального питания

Химический элементный состав растений. Макро- и микроэлементы, их усвояемые формы и роль в жизни растений. Критерии необходимости элементов. Распределение по органам, накопление и вторичное использование (реутилизация) элементов минерального питания растений. Потребность растений в элементах питания в течение вегетации. Биосинтетическая роль деятельности корня, ее взаимосвязь с функциями надземных органов.

Основные закономерности поглощения веществ. Механизмы ионного транспорта. Зависимость поглощения и выделения веществ от внутренних и внешних условий. Физиологические основы диагностики обеспеченности растений элементами минерального питания. Антагонизм ионов, природа и значение в жизни растений.

Форма А Страница 5 из 22

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

Физиологически уравновешенные растворы и их практическое применение. Выращивание растений без почвы.

Тема 5. Рост и его закономерности

Определение понятий «рост» и «развитие». Фазы роста клеток, их физиологобиохимические особенности. Фитогормоны, их роль в жизни растений. Использование синтетических регуляторов роста. Основные закономерности роста (целостность растительного организма, рост на протяжении всей жизни, периодичность, ритмичность, корреляции, полярность, регенерация), их практическое использование. Глубокий и вынужденный покой растений. Ростовые движения (тропизмы и настии), значение в жизни растений. Влияние внутренних и внешних факторов на рост растений. Регулирование роста светом. Экологическая роль фитохрома и других фоторецепторов.

Тема 6. Онтогенез и его регуляция

Развитие растений. Онтогенез и основные этапы развития растений. Регуляция прорастания семян. Запрограммированная гибель клеток в процессе онтогенеза. Возрастная изменчивость морфологических и физиологических признаков. Собственный и физиологический возраст органов растения. Цветение, формирование и созревание плодов и семян. Старение и смерть. Фотопериодизм и яровизация как механизмы синхронизации жизненного цикла растений с внешними условиями.

Раздел 3. Адаптации и устойчивость растений

Тема 7. Устойчивость растений и ее диагностика

Понятия физиологического стресса, адаптации и устойчивости. Приспособление онтогенеза растений к условиям среды как результат их эволюционного развития. Реакции клетки на внешние воздействия и основанные на них тесты диагностики состояния растительных тканей и растений. Закаливание растений.

Тема 8. Устойчивость растений к абиотическим и биотическим факторам среды

Холодостойкость. Зимние повреждения и диагностика устойчивости растений. Морозоустойчивость растений. Значение работ И.И. Туманова морозоустойчивости растений. Зимостойкость как устойчивость ко всему комплексу Засухоустойчивость, неблагоприятных факторов зимы. солеустойчивость жароустойчивость растений. Значение работ Н.А. Максимова в изучении устойчивости. Анатомо-физиологические особенности ксерофитов мезофитов, способы приспособления ксерофитов и мезофитов к недостатку воды в окружающей среде. Реакция растений на загрязнение окружающей среды. Устойчивость растений к действию биотических факторов. Физиологические основы иммунитета. Аллелопатические взаимодействия в ценозе. Почвоутомление. Проблема комплексной устойчивости растений к биотическим и абиотическим факторам.

Форма А Страница 6 из 22

Форма

6. ПРАКТИЧЕСКИЕ И СЕМИНАРСКИЕ ЗАНЯТИЯ

Не предусмотрены.

7. ЛАБОРАТОРНЫЕ РАБОТЫ (ЛАБОРАТОРНЫЙ ПРАКТИКУМ) Лабораторная работа №1.

Определение водоудерживающей способности растений методом завядания

Цель: определить и сравнить водоудерживающую способность листьев разных экологических групп растений.

В регулировании водообмена растений существенная роль принадлежит водоудерживающим силам клеток растений. Водоудерживающая способность клеток зависит от устойчивости видов к экстремальным условиям и от условий выращивания. Кроме того, водоудерживающая способность листьев зависит от реакции устьичного аппарата на срезание, так как у устойчивых видов устьица быстрее закрываются, чем у неустойчивых. Таким образом, этот показатель может характеризовать засухоустойчивость и газоустойчи- вость видов.

Материалы и оборудование. 1. Листья растений мезофитов и ксерофитов. 2. Вазелин. 3. Торзионные весы. 4. Ножницы.

Ход работы. Срезать по три листа растений, покрыть срез черешка разогретым вазелином. Взвешивают каждый лист и записывают вес и время взвешивания. Повторно листья взвешивают через 30 мин., 60 мин. и 90 мин. Убыль в весе листа показывает абсолютное количество потери воды за интервал времени. По полученным данным вычисляют количество испаренной воды в процентах к первоначальному весу листа. Показать на графике динамику относительной водоотдачи вида по среднему показателю. Сделать заключение о водоудерживающей способности растений.

Вопросы для самоконтроля:

- 1. Происходит ли транспирация при закрытых устьицах и у безлистных побегов.
- 2. От чего зависит степень открытия устьиц у растений в течение суток?
- 3. Почему К.А. Тимирязев назвал транспирацию «необходимым злом»?
- 4. Как объяснить завядание листьев в жаркий летний день?
- 5. Назовите внешние морфологические признаки водного дефицита растений.
- 6. Дайте определение водоудерживающей способности листьев растений.
- 7. Объясните механизм закрывания и открывания устьиц.
- 8. Как меняется интенсивность транспирации растений в течение вегетации?
- 9. Какие факторы влияют на интенсивность транспирации растений?
- 10. В каких случаях используют антитранспиранты.

Лабораторная работа №2. Химические свойства пигментов листа

Цель работы: изучение основных пигментов фотосинтеза.

Фотосинтез происходит в хлоропластах, который включает систему ламинарных двойных мембран — тилакоидов, образованных внутренней мембраной. В тилакоидах осуществляется световая фаза фотосинтеза - световая энергия солнечных лучей преобразуется в энергию $AT\Phi$, а биохимические реакции восстановления CO_2 и синтеза углеводов происходят в межтилакоидном пространстве. В мембранах тилакоида содержатся пигменты:

зеленые пигменты — хлорофилл а $C_{55}H_{72}O_5N4Mg$ и хлорофилл б $C_{55}H_{70}O_6N_4Mg$; желтые пигменты — каротиноиды, представленные каротинами и ксантофиллами.

По химической природе хлорофиллы представляют собой сложные эфиры дикарбоновой кислоты хлорофиллина и двух спиртов – метилового (СН₃ОН) и фитола

Форма А Страница 7 из 22

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

 $(C_{20}H_{39}OH)$. В центре молекулы хлорофилла располагается атом магния, соединенный с азотом четырех пиррольных колец двумя основными и двумя дополнительными связями (металлорганическая связь).

Каротиноиды представляют собой производные непредельного углеводорода изопрена CH_2 = $C(CH_3)$ -CH= CH_2 . Они имеют конъюгированные связи и также являются фотоактивными пигментами. Эмпирическая формула каротина — $C_{40}H_{56}$. Ксантофиллы — кислородные производные каротина тетратерпены, которые содержат гидроксильную группу и поэтому легко растворяются в спирте. Пигменты растворимы во многих органических растворителях, но не растворимы в воде.

Материалы и оборудование: 1. Высушенные листья крапивы. 2. Этиловый спирт. 3. Бензин. 4. Ступки с пестиками. 5. Штативы с пробирками. 6. Воронки. 7. Фильтры. 8. 20 %-ный раствор NaOH. 9. 10 %-ная соляная кислота. 10. Уксуснокислая медь или цинк. 11. Спиртовка, спички.

1. Получение спиртовой вытяжки пигментов

Обычно пигменты легко извлекаются из сухих или свежих листьев полярными растворителями (спирт, ацетон), которые разрушают связь хлорофиллов и ксантофиллов с липопротеидами пластид и тем самым обеспечивают их полное экстрагирование.

Ход работы. Сухие листья крапивы (2–3 г) растереть в фарфоровой ступке с небольшим количеством кварцевого песка, добавляя 3–5 мл этилового спирта. Для нейтрализации кислотности можно добавить щепотку растертого мела. Отфильтровать полученную вытяжку через складчатый фильтр или вату. Оставшуюся в ступке массу повторно растирают с небольшим количеством спирта и отфильтровывают в ту же пробирку.

Полученный фильтр содержит зеленые и желтые пигменты, но из-за преобладания хлорофиллов имеет интенсивно зеленую окраску.

2. Разделение пигментов по Краусу

Метод основан на различной растворимости пигментов в спирте и бензине. Эти растворители при сливании не смешиваются и образуют два слоя - верхний бензиновый и нижний спиртовой.

Ход работы. В чистую пробирку налить 2-3 мл спиртовой вытяжки пигментов и добавить двойное количество бензина. Закрыть пробирку пробкой и несколько раз сильно встряхнуть, чтобы перемешать содержимое, а затем дать отстоятся. Произойдет расслоение смеси: в верхний бензиновый слой зеленого цвета перейдут хлорофиллы и каротин, а ксантофиллы, которые не растворяются в бензине, остаются в нижнем спиртовом слое.

Если разделение пигментов произошло не совсем чисто и нижний ксантофилловый слой сохраняет зеленоватое окрашивание, в раствор добавляют 2-3 капли дистиллированной воды и вновь встряхивают. При помутнении ксантофиллового слоя следует прилить в пробирку немного этилового спирта и снова встряхнуть ее.

Зарисовать результат опыта цветными карандашами с указанием слоев и пигментов в них.

2. Омыление хлорофилла щелочью

Обрабатывая хлорофилл щелочью, можно вызвать омыление эфирных групп, то есть отщепление остатков метилового спирта и фитола, и осаждение образующейся при этом соли хлорофиллиновой кислоты в раствор спирта. Соль хлорофиллиновой кислоты сохраняет зеленую окраску и оптические свойства хлорофилла, но отличается большей гидрофильностью. В верхнем бензиновом слое остается каротин, придавая ему желтоватооранжевую окраску.

Ход работы. В пробирку налить 1–2 мл спиртового раствора пигментов и несколько капель 20 %-ного раствора щелочи или несколько гранул щелочи, перемешать. Прилить

Форма А Страница 8 из 22

равный объем бензина и взболтать содержимое, дать отстоятся. Произойдет разделение содержимого пробирки на два слоя, но теперь зеленым будет нижний спиртовой слой, а бензиновый - желтый.

Зарисовать пробирку с образовавшимися слоями и указать распределение пигментов.

4. Получение феофитина и восстановление металлорганической связи

Хлорофиллы содержат в порфириновом ядре слабо удерживаемый атом магния. При действии сильной кислоты магний хлорофилла замещается двумя атомами водорода, что приводит к образованию вещества бурого цвета – феофитина.

Если на феофитин подействовать солями меди, цинка или ртути, то два протона в порфериновом ядре вновь замещаются на атом металла и восстанавливается зеленая окраска. Следовательно, цвет хлорофилла связан с наличием металлоорганической связи в молекуле.

Ход работы. В пробирку наливают 2–3 мл спиртовой вытяжки пигментов и прибавляют 2 капли 10 %-ной HCl. При взбалтывании пробирки зеленая окраска хлорофилла переходит в бурую — образуется феофитин. Затем в пробирку с феофитином добавляют несколько кристалликов уксуснокислой меди или цинка и пробирку осторожно нагревают на спиртовке до начала кипения раствора. Отметить восстановление зеленой окраски раствора.

Обдумать результаты и сделать выводы о химических свойствах пигментов.

Вопросы для самоконтроля

- 1. Какими методами можно разделить пигменты зеленого листа?
- 2. При каких условиях из хлорофилла образуется феофитин и почему он бурого цвета?
- 3. Почему в проходящем и отраженном свете спиртовая вытяжка хлорофилла меняет окраску?
- 4. Какие показатели характеризуют светолюбие и теневыносливость листьев?
- 5. Что такое листовая мозаика? У каких растений наблюдается это явление у светолюбивых или теневыносливых?

Лабораторная работа №3.

Определение дыхательного коэффициента прорастающих маслянистых семян Цель работы: научиться высчитывать дыхательный коэффициент семян.

Дыхательным коэффициентом (ДК) называется отношение объема, выделенного при дыхании CO_2 к объему поглощенного O_2 , при окислении субстрата дыхания до CO_2 и H_2O . Величина этого отношения характеризует химизм дыхания и может изменяться в зависимости от используемых на дыхание органических соединений, содержания и использования кислорода.

Если дыхательным субстратом служат углеводы, реакция идет по уравнению:

$$C_6H_{12}O_6 + 6 O_2 = 6 CO_2 + 6 H_2O$$
, то есть ДК = $\frac{6 CO_2}{6 O_2} = 1$.

Если дыхательным субстратом служат органические кислоты, содержащие больше кислорода на 1 атом углерода, чем углеводы, то дыхательный коэффициент будет больше 1.

Так, при дыхании за счет щавелевой кислоты дыхательный коэффициент будет равен:

$$2H_2C_2O_4 + O_2 = 4CO_2 + 2H_2O$$
, то есть ДК = $\frac{4CO_2}{O_2} = 4$.

Форма А Страница 9 из 22

Ф-Рабочая программа дисциплины

Если на дыхание используются липиды или белки — соединения, в молекулах которых много атомов водорода и мало кислорода, то дыхательный коэффициент будет иметь значение меньше 1, так как на окисление водорода потребуется дополнительное количество кислорода. Например, при окислении стеариновой кислоты —

$$C_{18}H_{36}O_3 + 26O_2 = 18CO_2 + 18H_2O$$
, то есть ДК = $\frac{18CO_2}{26O_2} = 0,69$.

ДК зависит от условий внешней среды, от структуры различных органов растений. При недостатке кислорода в атмосфере или затруднении его доступа в клетки и ткани (погруженные в воду семена, ткани в глубине массивных органов) усиливается анаэробное дыхание. При этом окисление субстрата и выделение CO₂ происходят без поглощения кислорода воздуха. В этом случае ДК будет больше 1.

Материалы и оборудование. 1. Прибор для определения дыхательного коэффициента, который состоит из колбы с плотно пригнанной пробкой, в которую вставлена изогнутая под острым углом измерительная трубка. 2. Наклюнувшие семена сосны, ели, лиственницы, ясеня и других маслянистых пород. 3. Стеклянные бюксы, пинцет, фильтровальная бумага, ватка на нитке, штатив. 4. Часы. 5. Раствор концентрированной NaOH. 6. Раствор эозина или любого красителя, не окрашивающего стекло.

Ход работы. Предварительно замочить семена деревьев для прорастания. В колбу, примерно до половины, насыпать проросшие семена одного вида и плотно закрыть пробкой.

Конец капиллярной трубки опустить в бюкс с раствором эозина, а колбу укрепить на штативе. Опыт ведется при комнатной температуре. Отметить положение мениска окрашенного раствора в трубке. Через 5 или 10 мин. в зависимости от интенсивности дыхания отмечают число делений, на которые поднялся эозин. Измерение еще раз повторить за тот же промежуток времени. После этого осторожно открыть и вынуть трубку из раствора эозина. В колбу под пробку поместить комочек ваты на нитке, смоченный в щелочи. Плотно закрыть колбу, укрепить на штативе и поместить конец измерительной трубки в эозин. Снова провести измерение движения раствора эозина в трубке за те же интервалы времени. Опыт поставить в 3-кратной повторности. После окончания опыта семена подсушить на фильтровальной бумаге и взвесить.

Первый отсчет (A) будет соответствовать разности объемов поглощенного кислорода и выделенного углекислого газа за данный промежуток времени. Отсчет в варианте с щелочью (B) выражает объем только поглощенного кислорода, так как выделенный углекислый газ поглощает щелочь.

Объем выделенного CO_2 находят по формуле: B - A. Отсюда ДК = (B-A)/B.

Если можно деления шкалы измерительной трубки перевести в миллилитры, то по данным опыта можно вычислить интенсивность дыхания проросших семян в мл O_2 или CO_2 на 1 г семян за 1 час.

где Ид – интенсивность дыхания;

М – вес семян, г;

Т – интервал времени измерения, мин. Результаты записывают в табл.1.

Таблица 1

Форма А Страница 10 из 22

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

Объект	Объем	Объем газа, мм							
исследования	без щелочи				со щ	со щелочью			
	1	2	3	4	1	2	3	4	
Семена сосны									
Семена ели									
Семена									
лиственницы									

Сделать выводы об интенсивности дыхания и дыхательном субстрате различных видов семян.

Вопросы для самоконтроля.

- 1. Какова функция фермента пероксидазы? Почему по ее активности можно судить об устойчивости растений к неблагоприятным факторам?
- 2. Как определяется дыхательный коэффициент?
- 3. Какова связь между величиной дыхательного коэффициента и энергетической составляющей эффективностью дыхания?
- 4. Почему у крахмалистых и маслянистых семян разные дыхательные коэффициенты?
- 5. Почему дыхательные коэффициенты у исследованных лесных семян различаются?

Лабораторная работа №4.

Количественное определение содержания золы в различных органах и частях древесных растений

Цель работы: определение содержания минеральных веществ в разных частях растения.

Содержание зольных элементов в растении весьма непостоянно и изменяется под влиянием различных условий в довольно широких пределах. Однако количественное соотношение элементов в различных органах растений остается более или менее постоянным. Из всех органов наиболее богаты зольными элементами листья (до 15 %) и мелкие всасывающие корни, относительно высокое содержание золы в коре деревьев и корнях, несколько меньшее - в стеблях травянистых растений и в семенах, а меньше всего - в древесине (десятые доли процента).

Масса золы неодинакова у различных видов деревьев и в различных условиях местообитания, а также зависит от возраста. При определении минерального статуса дерева, питательных качеств лесной почвы, в оценки качества сырья необходимо определять зольность различных органов древесных растений.

Материалы и оборудование. 1. Древесина, кора, побеги, почки, листья, семена, хвоя и почки различных растений. 2. Муфельная печь, тигли. 3. Торзионные весы. 4. Щипцы с изогнутым концом. 5. Вытяжной шкаф. 6. Эксикатор.

Ход работы. Взвесить материал для сжигания. Примерная навеска сжигаемого материала (М) - 1 г для листьев и побегов и 4 г для древесины. Весь отвешенный материал переносят без потерь в тигли, пронумерованные с нижней стороны мягким карандашом. Поместить тигли в муфельную печь и обугливать сначала при средней нагретости. После прекращения выделения дыма (работа ведется в вытяжном шкафу) тигли с озоляемым материалом прокалить при более сильном нагреве 15-20 мин. до получения белой или коричневатой окраски золы.

Тигли вынимают из муфеля с помощью тигельных щипцов, ставят на асбестовую подставку, дают немного остыть и переносят в эксикатор.

Охлажденный до температуры руки тигель с золой взвешивают на весах с точностью

Форма А Страница 11 из 22

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

до 0,01 г. Записывают вес тигля с золой (А).

Освобождают тигель от золы и снова взвешивают с той же точностью.

Записывают вес тигля без золы (В).

Определяют вес золы: m = A - B. Вычисляют вес золы во взятом материале:

 $X = m/M \cdot 100\%.$

Полученные данные для различных частей дерева и для отдельных пород занести в табл. 2.

Таблица 2

Порода	Содержание зольных веществ, %					
	древесина	побеги	почки или хвоя			
Сосна обыкновенная						
Береза повислая						

Сравнить полученные данные для различных частей деревьев разных пород. Объяснить, с чем это связано.

Оставшуюся после работы золу аккуратно переносят в пробирки с этикеткой для микрохимического анализа.

Лабораторная работа №5.

Качественное обнаружение макро и микроэлементов в золе древесины ствола дерева

Цель работы: качественный анализ микроэлементов древесины.

Химический состав золы древесины сложен и разнообразен. Он зависит от биологических особенностей дерева и состава почвы, на которой оно выросло. В основе метода лежит способность некоторых солей с реактивами давать кристаллы характерной формы, свойственные только этим солям. Этим методом определяются кальций и магний. С некоторыми солями реактивы дают специфическое окрашивание. Этот прием используется для определения фосфора и железа.

Материалы и оборудование. 1. Зола березы или сосны. 2. Микроскоп. 3. Пробирки, фильтровальная бумага, предметные стекла, воронки, стеклянные палочки. 4. 10%-ный раствор соляной кислоты, 1%-ный раствор Na2HPO4, 1%-ная серная кислота, 10%-ный раствор аммиака, 1 %-ный раствор желтой кровяной соли, 1%-ный раствор молибденовокислого аммония в 15 %-ной азотной кислоте.

Ход работы. В пробирку с золой наливают 10 %-ный раствор соляной кислоты в объеме примерно в 4 раза большем, чем объем золы. Взбалтывают до растворения. Полученный раствор отфильтровывают через складчатый фильтр. Берут 3 тщательно вымытых сухих предметных стекла и раскладывают на бумаге. На стекла наносят тонкими стеклянными палочками по капле соответствующего реактива. Рядом от капли реактива наносят каплю испытуемого раствора. Обе капли соединяют, чтобы содержимое смешалось. Стекла этикетируют и оставляют до тех пор, пока не подсохнут. При малом и большом увеличении микроскопа рассматривают образовавшиеся кристаллы зольных элементов.

Для обнаружения кальция берут 1 %-ный раствор серной кислоты:

 $CaCl_2 + H_2SO_4 = CaSO_4 + 2HCl.$

В результате реакции выпадает осадок – игольчатые кристаллы.

Чтобы обнаружить магний, каплю испытуемого раствора сначала нейтрализуют аммиаком (в каплю испытуемого раствора вносят небольшую каплю аммиака), а затем соединяют капли реактива, которым является 1 %- ный раствор кислого фосфорнокислого натрия. В результате смешивания выпадают характерные кристаллы

Форма А Страница 12 из 22

фосфорноаммиачномагнезиальной соли:

 $MgCl_2 + NH_3 + Na_2HPO_4 = NH_4MgPO_4 + 2NaCl.$

Для открытия фосфора каплю раствора соединяют с 1 %-ным раствором молибденовокислого аммония в 15 %-ной азотной кислоте. Получается зеленоватожелтый скрытокристаллический осадок фосфорномолибденового аммиака — аммонийнофосфорного молибдата (NH₄)₃PO₄ · 12MoO₃, принимающего со временем все более интенсивную зеленую окраску.

 $H_3PO_4 + 12 (NH_4)_2MoO_3 + 21 HNO_3 = (NH_4)_3PO_4 \cdot 12MoO_3 + 21 NH_4NO_3 + 12H_2O_3 + 12H_2O_$

Для открытия железа пользуются обычной цветной реакцией с 1 %- ным раствором желтой кровяной соли (реакция проводится в пробирке). При этом образуется берлинская лазурь с интенсивно синей окраской.

 $4FeCl_3 + 3K_2Fe(CN)_6 = Fe_4[Fe(CN)_6]_3 + 12KCl.$

Зарисовать все виды и формы кристаллов при определении исследуемых зольных элементов. Указать, почему зола является одним из ценнейших комплексных удобрений.

Вопросы для самоконтроля.

- 1. Почему у хвойных и лиственных видов содержание зольных элементов отличается?
- 2. В каких органах растений в эксперименте больше зольных элементов и почему?
- 3. Назовите зольные элементы, обнаруженные химическим путем.
- 4. В каких листьях содержится больше зольных элементов в молодых или старых?
- 5. Для чего необходимо определять количество нитратов и фосфатов в листьях растений?

Лабораторная работа №6.

Влияние выделений листьев растений на рост корней семян

Цель работы: оценка влияния фитонцидов.

Растительные фитонциды оказывают на прорастание корней как стимулирующее, так и ингибирующее влияние. Угнетающим или стимулирующим действием обладают не только эфирномасличные растения, но и такие как очиток едкий, цмин песчаный и другие виды. Наибольший эффект влияния фитонцидов наблюдается во время цветения растений и особенно безоблачные дни. В лабораторных условиях легко можно убедиться фитонциды каких растений стимулируют прорастание семян, а какие угнетают.

Материалы и оборудование: 1. Чашки Петри диаметром 10 и 3 см; 2. Фильтровальная бумага; 3. Проросшие семена ячменя, овса, ржи или пшеницы; 4.Листья древесных и комнатных растений.

Ход работы. В чашки Петри диаметром 10 см поместить увлажненную фильтровальную бумагу, а по периферии – проросшие семена ячменя, овса, ржи или пшеницы в количестве 20 шт. Семена отобрать по размеру и весу. В центр поставить чашку Петри диаметром 3 см. В меньшую чашку поместить кашицу растертых листьев. В качестве контроля вместо кашицы из растертых листьев. Для каждого вида растений необходимо поставить эксперимент из 3-х чашек Петри. Через неделю со дня постановки лабораторной работы посчитать число проросших семян и измерить длину корешков. Результаты занести в табл. 3.

Таблица 3

	Показатели активности фитонцидов	Контроль	Опыт
	[±	Вариант опыта	Вариант опыта

Форма А Страница 13 из 22

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

Число проросших семян, %	1	2	3	1	2	3
Длина корешков, мм						
Среднее значение						

Сделать выводы об активности фитонцидов у листьев растений.

Вопросы для самоконтроля.

- 1. С помощью каких приемов можно ускорить переход растения в состояние покоя или задержать распускание почек?
- 2. Какие факторы внешней среды служат сигналом к осеннему листопаду древесных растений в умеренной зоне?
- 3. Какие органы растений синтезируют фитонциды?

Лабораторная работа №7.

Изучение защитного действия криопротекторов на устойчивость растительных клеток к действию низких температур

Цель работы: Оценка защитного действия криопротекторов.

При воздействии отрицательных температур на растительные ткани в межклетниках образуются кристаллы льда, которые повреждают мембраны, оттягивают воду из клеток и обезвоживают протопласт. При определенной степени обезвоживания, индивидуальной для каждого растения, протоплазма коагулирует.

Кристаллы льда, образующиеся непосредственно в клетках, оказывают механическое воздействие, в результате чего нарушается внутренняя структура протоплазмы, резко повышается ее проницаемость, а при дальнейшем пребывании на морозе наступает отмирание клеток. Скорость отмирания протоплазмы клеток зависит как от температуры и времени экспозиции, так и от водоудерживающей способности самой клетки. У морозоустойчивых видов наблюдается увеличение криопротекторов (растворимых сахаров) в зимующих органах растений, что повышает водоудерживающую способность тканей.

Материалы и оборудование. 1. 1 М растворы сахарозы; 2. 1 М раствор глицерина, 3. 8%-й раствор NaCl, 4. свекла; 5. пробочные сверла; 6. пробирки, лезвия; 5. морозильная камера; 6. микроскопы; 7. поваренная соль.

Ход работы. Из поперечного среза красной столовой свеклы толщиной 0,5 см при помощи пробочного сверла 5-6 мм диаметром делают высечки. Высечки тщательно ополаскивают водой и помещают в три пробирки по 3-4 высечки в каждую. В первую пробирку наливают 5 мл дистиллированной воды, во вторую – 5 мл 1 М раствора сахарозы, в третью – 5 мл 1 М раствора глицерина, в четвертую – 2,5 мл 1 М раствора сахарозы и 2,5 мл 1 М раство- ра глицерина. Пробирки этикетируют и на 20 минут погружают в охладительную смесь, состоящую из трех частей снега или льда и одной части поваренной соли. Температура охладительной смеси около – 20°С. Затем пробирки вынимают из охладительной смеси и размораживают в стакане воды комнатной температуры.

Отмечают различия в интенсивности окрашивания жидкостей в пробирках и объясняют их. Из анализируемых высечек готовят тонкие срезы и рассматривают их под микроскопом при малом увеличении в капле того же раствора, в котором они находились. Подсчитывают общее число клеток в одном поле зрения и число обесцвеченных клеток, из которых вышел бетацианин.

Для проверки жизнеспособности клеток можно провести плазмолиз. Тонкие срезы клеток помещают в раствор 8%-й раствор NaCl на 10 мин, а затем препараты рассматривают под микроскопом и подсчитывают процент плазмолизированных клеток в

Форма А Страница 14 из 22

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

поле зрения.

Результаты опыта записывают в табл. 4 и делают выводы.

Таблипа 4

Условия	-		Число плазмолизированных клеток в поле зрения микроскопа, %
	всего	окрашенных	
Вода			
5 мл 1М р-р сахарозы			
5 мл 1М р-р глицерина			
2,5 мл 1 М р-р сахарозы и 2,5 1М р-р глицерина			

Лабораторная работа №8.

Определение степени солеустойчивости древесных растений

Цель работы: определить солеустойчивость некоторых растений.

Показатель всхожести семян в растворах минеральных солей разной концентрации можно использовать при определении степени солеустойчивости древесных растений. Самая высокая всхожесть семян в концентрированных растворах солей обычно характерна для более солеустойчивых древесных растений.

Материалы и оборудование. 1. Семена древесных растений; 2. термостат; 3. Чашки Петри; 4. Раствор формальдегида (1 мл в 300 мл воды); 5. 3-, 7-, 12%-ные растворы NaCl.

Ход работы. Семена древесных растений обработать формальдегидом в течение 5 мин. Разложить в стерильные чашки Петри кружки фильтровальной бумаги и семена растений (50 шт.), опыт провести в трехкратной повторности. Затем в чашки Петри влить раствор NaCl различных концентраций, написать этикетки каждому варианту. В контрольную чашку Петри влить дистиллированную воду. Через неделю подсчитать число проросших семян по вариантам опыта и сравнить их с контролем. Результаты опыта занести в табл. 5. Сделать выводы об устойчивости исследованных видов.

Таблица 5

Семена	Повторности	Концентр	ация NaCl	Контроль	
Ясеня об.		3%	7%	12%	
	1				
	2				
	3				
	среднее				

Вопросы для самоконтроля.

- 1. Назовите, какие вещества являются растительными криопротекторами. Как они защищают растительные клетки?
- 2. В чем проявляется защитное действие сахарозы на белки?
- 3. Как влияют высокие температуры на повреждаемость клеток растений?
- 4. Назовите виды растений, устойчивые к сернистому газу и аммиаку.
- 5. По какому принципу растения были разделены на устойчивые, среднеустойчивые и неустойчивые виды?
- 6. Почему газоустойчивость растений может меняться? Когда это происходит и от чего это зависит?

Форма А Страница 15 из 22

7. Какая концентрация солей является лимитирующей для прорастания семян древесных растений?

8. ТЕМАТИКА КУРСОВЫХ КОНТРОЛЬНЫХ РАБОТ, РЕФЕРАТОВ

Не предусмотрены.

9. ПЕРЕЧЕНЬ ВОПРОСОВ К ЗАЧЕТУ

- 1. Химический состав, структура и функции хлоропластов.
- 2. Пигменты листа, методы их выделения и разделения. Изменение содержания пигментов в зависимости от вида растений и условий произрастания.
- 3. Пигменты листа, их химическая природа и оптические свойства. Роль пигментов в процессе фотосинтеза.
 - 4. Световая фаза фотосинтеза, ее роль и особенности.
 - 5. Темновая фаза фотосинтеза.
 - 6. Влияние на фотосинтез внутренних и внешних факторов.
 - 7. Дневная динамика и сезонные изменения фотосинтеза.
 - 8. Взаимодействие факторов (внешних и внутренних) при фотосинтезе.
 - 9. Светолюбивые и теневыносливые растения, их физиологические различия.
 - 10. Методы изучения фотосинтеза.
- 11. Физиологические основы выращивания растений при искусственном освещении.
 - 12. Дегидрогеназы, их химическая природа и роль.
 - 13. Оксидазы, их химическая природа и роль.
 - 14. Анаэробная фаза дыхания.
 - 15. Аэробная фаза дыхания.
 - 16. Энергетика дыхания, вклад в нее анаэробной и аэробной фаз.
 - 17. Использование энергии дыхания в физиологических процессах.
 - 18. Роль дыхания в жизни растений.
 - 19. Зависимость дыхания от внутренних и внешних факторов.
- 20. Физиологические основы регулирования дыхания при хранении сельскохозяйственной продукции.
 - 21. Дыхательный коэффициент, способ его определения, зависимость от факторов.
 - 22. Методы изучения дыхания.
- 23. Физиологическая роль азота, особенности питания растений нитратными и аммонийными солями.
- 24. Физиологическая роль калия, кальция и магния, их распределение в растении и внешние признаки недостатка
- 25. Физиологическая роль фосфора и серы, их усвояемые формы, поглощение и распределение по растению. Внешние признаки недостатка этих элементов.
- 26. Физиологическая роль микроэлементов, их распределение в растении и внешние признаки недостатка.
- 27. Распределение по органам, накопление и вторичное использование (реутилизация) элементов минерального питания в растениях.
- 28. Физиологические основы диагностики обеспеченности растений элементами минерального питания.

29. Физиологические основы применения удобрений.

Форма А Страница 16 из 22

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

- 30. Возможности использования листовой диагностики обеспеченности растений элементами питания.
- 31. Вегетационный и полевой методы исследования, их роль в изучении основных закономерностей жизнедеятельности растений и решении практических задач.
 - 32. Фазы роста клеток, роль в формировании тканей и органов растений.
 - 33. Влияние внешних и внутренних факторов на рост растений.
 - 34. Закономерности роста растений.
 - 35. Онтогенез и основные этапы развития растения.
- 36. Глубокий и вынужденный покой растений, его значение, способы продления и прерывания.
- 37. Фитогормоны растений, общие закономерности действия и роль в регуляции роста и развития.
- 38. Возрастные изменения морфологических и физиологических признаков растений, возможность регулирования в садоводстве.
 - 39. Синтетические регуляторы роста, их применение в садоводстве.
 - 40. Ростовые движения, их значение в жизни растений.
- 41. Фотопериодизм растений, его роль и возможности использования для регуляции роста и развития растений.
 - 42. Регулирование роста светом. Экологическая роль фитохрома.
 - 43. Физиологические основы вегетативного размножения древесных растений
- 44. Физиологические основы устойчивости растений к неблагоприятным условиям среды.
- 45. Холодоустойчивость растений. Причины повреждения и гибели растений при низких температурах.
- 46. Морозоустойчивость растений, причины повреждения и гибели растений при отрицательных температурах. Значение работ И.И. Туманова.
- 47. Зимостойкость как устойчивость растений к комплексу неблагоприятных факторов, причины зимних повреждений растений, их предотвращение.
- 48. Засухоустойчивость и жароустойчивость, причины гибели растений. Значение работ Н.А. Максимова. Пути повышения засухоустойчивости.
- 49. Солеустойчивость растений, типы засоления, причины гибели растений. Пути повышения солеустойчивости растений.
- 50. Действие на растения загрязнения среды. Накопление токсичных веществ в продуктивных частях растения.
- 51. Анатомо-физиологические причины полегания растений, пути предотвращения полегания.
- 52. Нарушение физиологических процессов под влиянием инфекции. Иммунитет растений. Использование культуры ткани для получения безвирусного посадочного материала.
- 53. Анатомо-физиологические особенности ксерофитов и мезофитов, способы их приспособления к недостатку воды в окружающей среде.
- 54. Закаливание растений, физиологические основы и возможности применения в садоводстве.

10. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

Содержание, требования, условия и порядок организации самостоятельной работы обучающихся с учетом формы обучения определяются в соответствии с «Положением об организации самостоятельной работы обучающихся», утвержденным Ученым советом УлГУ (протокол №8/268 от 26.03.2019 г.).

Форма A Страница 17 из 22

Форма обучения – очная.

Название разделов	Вид самостоятельной работы	Объем в часах	Форма контроля
Обмен веществ растений	Проработка учебного материала с использованием ресурсов учебнометодического и информационного обеспечения дисциплины. Подготовка к тестированию. Подготовка к сдаче зачета.	15	тестирование, устный опрос, зачет
Минеральное питание, рост и развитие растений	Проработка учебного материала с использованием ресурсов учебнометодического и информационного обеспечения дисциплины. Подготовка к тестированию. Подготовка к сдаче зачета.	15	тестирование, устный опрос, зачет
Адаптации и устойчивость растений	Проработка учебного материала с использованием ресурсов учебнометодического и информационного обеспечения дисциплины. Подготовка к тестированию. Подготовка к сдаче зачета.	10	тестирование, устный опрос, зачет

11. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) Список рекомендуемой литературы

основная

- 1. Полонский В. И. Введение в физиологию растений: учебное пособие / В. И. Полонский; Полонский В. И. 2-е изд., доп. и перераб. Красноярск: КрасГАУ, 2014. 342 с. Рекомендовано Сибирским региональным учебно-методическим центром высшего профессионального образования для межвузовского использования в качестве учебного пособия для студентов, обучающихся по направлениям подготовки бакалавров 020400.62 «Биология», 110100.62 «Агрохимия и агропочвоведение», 110400.62 «Агрономия», 110900.62 «Технология производства и переработки сельскохозяйственной продукции». Библиогр.: доступна в карточке книги, на сайте ЭБС Лань. Книга из коллекции КрасГАУ Биология. https://e.lanbook.com/book/187198. https://e.lanbook.com/book/187198. Режим доступа: ЭБС "Лань"; для авторизир. пользователей. / .— ISBN 0_399150
- 2. Физиология и биохимия растений / Н. С. Таймазова, М. Г. Муслимов, А. З. Шихмурадов, Г. И. Арнаутова; Таймазова Н. С., Муслимов М. Г., Шихмурадов А. З., Арнаутова Г. И. Махачкала : ДагГАУ имени М.М. Джамбулатова, 2023. 284 с. Библиогр: доступна в карточке книги, на сайте ЭБС Лань. Книга из коллекции ДагГАУ имени М.М. Джамбулатова Биология. https://e.lanbook.com/book/333875. https://e.lanbook.com/img/cover/book/333875.jpg. Режим доступа: ЭБС "Лань"; для авторизир. пользователей. ISBN 5-7944-0961-4. / .— ISBN 0_510173

дополнительная

Форма А Страница 18 из 22

- Ф-Рабочая программа дисциплины
- 1. Андреев, В. П. Лекции по физиологии растений: учебное пособие / В. П. Андреев; В. П. Андреев. Санкт-Петербург: Российский государственный педагогический университет им. А.И. Герцена, 2012. 300 с. Книга находится в премиум-версии ЭБС IPR BOOKS. Текст. Гарантированный срок размещения в ЭБС до 17.08.2023 (автопролонгация). электронный. Электрон. дан. (1 файл). URL: http://www.iprbookshop.ru/20552.html. Режим доступа: ЭБС IPR BOOKS; для авторизир. пользователей. ISBN 978-5-8064-1666-8. / .— ISBN 0_123641
- 2. Физиология патогенеза и болезнеустойчивости растений / А. П. Волынец, В. П. Шуканов, Н. В. Полякова [и др.] ; А. П. Волынец, В. П. Шуканов, Н. В. Полякова [и др.]. Минск: Белорусская 17 / 20 Министерство науки и высшего образования РФ Ульяновский государственный университет Форма Ф Рабочая программа дисциплины наука, 2016. 253 с. Книга находится в премиум-версии ЭБС IPR BOOKS. Текст. Весь срок охраны авторского права. электронный. Электрон. дан. (1 файл). URL: http://www.iprbookshop.ru/61120.html. Режим доступа: ЭБС IPR BOOKS; для авторизир. пользователей. ISBN 978-985-08-1965-9. / .— ISBN 0_136339
- 3. Физиология растений: учебно-методическое пособие / И. С. Киселева, М. Г. Малева, Г. Г. Борисова [и др.]; И. С. Киселева, М. Г. Малева, Г. Г. Борисова [и др.]; под редакцией И. С. Киселевой. Екатеринбург: Издательство Уральского университета, 2018. 120 с. Книга находится в премиум-версии ЭБС IPR BOOKS. Текст. Гарантированный срок размещения в ЭБС до 22.04.2026 (автопролонгация). электронный. Электрон. дан. (1 файл). URL: http://www.iprbookshop.ru/106541.html. Режим доступа: ЭБС IPR BOOKS; для авторизир. пользователей. ISBN 978-5-7996-2416-3. / .— ISBN 0_159685
- 4. Ирисханова З. И. Методические указания к лабораторным работам по физиологии растений / З. И. Ирисханова, Р. С. Эржапова, Л. Г. Молочаева; З. И. Ирисханова, Р. С. Эржапова, Л. Г. Молочаева. Грозный: Чеченский государственный университет, 2019. 55 с. Книга находится в премиум-версии ЭБС IPR BOOKS. Текст. Гарантированный срок размещения в ЭБС до 28.04.2026 (автопролонгация). электронный. Электрон. дан. (1 файл). URL: http://www.iprbookshop.ru/107267.html. Режим доступа: ЭБС IPR BOOKS; для авторизир. пользователей. ISBN 2227-8397. / .— ISBN 0_159914
- 5. Физиология и биохимия растений: учебное пособие. Персиановский: Донской ГАУ, 2019. 172 с. Библиогр.: доступна в карточке книги, на сайте ЭБС Лань. Книга из коллекции Донской ГАУ Ветеринария и сельское хозяйство. https://e.lanbook.com/book/133430. https://e.lanbook.com/img/cover/book/133430.jpg. Режим доступа: ЭБС "Лань"; для авторизир. пользователей. / .— ISBN 0_372640

учебно-методическая

1. Митрофанова Н. А. Физиология растений: методические указания по изучению дисциплины, выполнению лабораторных занятий и самостоятельной работы бакалавров направления подготовки 06.03.01 Биология / Н. А. Митрофанова, Е. В. Рассадина; УлГУ, ИМЭиФК, Экол. фак. - 2019. - Загл. с экрана. - Неопубликованный ресурс. - Электрон. текстовые дан. (1 файл: 499 КБ). - Режим доступа: ЭБС УлГУ. - Текст: электронный. / .— ISBN 0_40216.

Форма A Страница 19 из 22

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

Согласовано:

		, _	
Директор научной библиотеки	/ Бурханова M.M.	1 kgs 1	2024
Должность сотрудника научной библиотеки	ФИО	подпись	дата

б) программное обеспечение

- OC MicrosoftWindows
- 2. MicrosoftOffice 2016
- 3. «МойОфис Стандартный»

в) Профессиональные базы данных, информационно-справочные системы

 Φ орма A Страница 20 из 22

1. Электронно-библиотечные системы:

- 1.1. Цифровой образовательный ресурс IPRsmart : электронно-библиотечная система : сайт / ООО Компания «Ай Пи Ар Медиа». Саратов, [2024]. URL: http://www.iprbookshop.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.2. Образовательная платформа ЮРАЙТ : образовательный ресурс, электронная библиотека : сайт / ООО Электронное издательство «ЮРАЙТ». Москва, [2024]. URL: https://urait.ru . Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.3. База данных «Электронная библиотека технического ВУЗа (ЭБС «Консультант студента») : электронно-библиотечная система : сайт / ООО «Политехресурс». Москва, [2024]. URL: https://www.studentlibrary.ru/cgi-bin/mb4x. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.4. Консультант врача. Электронная медицинская библиотека: база данных: сайт / OOO «Высшая школа организации и управления здравоохранением-Комплексный медицинский консалтинг». Москва, [2024]. URL: https://www.rosmedlib.ru. Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 1.5. Большая медицинская библиотека: электронно-библиотечная система: сайт / ООО «Букап». Томск, [2024]. URL: https://www.books-up.ru/ru/library/. Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 1.6. ЭБС Лань: электронно-библиотечная система: сайт / ООО ЭБС «Лань». Санкт-Петербург, [2024]. URL: https://e.lanbook.com. Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 1.7. ЭБС Znanium.com : электронно-библиотечная система : сайт / ООО «Знаниум». Москва, [2024]. URL: http://znanium.com. Режим доступа : для зарегистрир. пользователей. Текст : электронный.
- **2. КонсультантПлюс** [Электронный ресурс]: справочная правовая система. / ООО «Консультант Плюс» Электрон. дан. Москва : КонсультантПлюс, [2024].
- **3. eLIBRARY.RU**: научная электронная библиотека : сайт / ООО «Научная Электронная Библиотека». Москва, [2024]. URL: http://elibrary.ru. Режим доступа : для авториз. пользователей. Текст : электронный
- **4. Федеральная государственная информационная система «Национальная электронная библиотека»** : электронная библиотека : сайт / ФГБУ РГБ. Москва, [2024]. URL: https://нэб.рф. Режим доступа : для пользователей научной библиотеки. Текст : электронный.
- **5. Российское образование** : федеральный портал / учредитель ФГАУ «ФИЦТО». URL: http://www.edu.ru. Текст : электронный.
- **6.** Электронная библиотечная система УлГУ: модуль «Электронная библиотека» АБИС Мега-ПРО / ООО «Дата Экспресс». URL: http://lib.ulsu.ru/MegaPro/Web. Режим доступа: для пользователей научной библиотеки. Текст: электронный.

Инженер ведущий

Щуренко Ю.В. 2024

Форма А Страница 21 из 22

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф-Рабочая программа дисциплины		

Аудитории для проведения лекций, практических занятий, для проведения текущего контроля и промежуточной аттестации.

Аудитории укомплектованы специализированной мебелью, учебной доской. Аудитории для проведения лекций оборудованы мультимедийным оборудованием для предоставления информации большой аудитории. Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде, электронно-библиотечной системе.

Перечень оборудования, используемого в учебном процессе:

- ноутбук
- мультимедийный проектор
- иллюстративные материалы
- тематические презентации

13. СПЕЦИАЛЬНЫЕ УСЛОВИЯ ДЛЯ ОБУЧАЮЩИХСЯ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

В случае необходимости, обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося) могут предлагаться одни из следующих вариантов восприятия информации с учетом их индивидуальных психофизических особенностей:

- для лиц с нарушениями зрения: в печатной форме увеличенным шрифтом; в форме электронного документа; в форме аудиофайла (перевод учебных материалов в аудиоформат); в печатной форме на языке Брайля; индивидуальные консультации с привлечением тифлосурдопереводчика; индивидуальные задания и консультации;
- для лиц с нарушениями слуха: в печатной форме; в форме электронного документа; видеоматериалы с субтитрами; индивидуальные консультации с привлечением сурдопереводчика; индивидуальные задания и консультации;
- для лиц с нарушениями опорно-двигательного аппарата: в печатной форме; в форме электронного документа; в форме аудиофайла; индивидуальные задания и консультации;
- в случае необходимости использования в учебном процессе частично/исключительно дистанционных образовательных технологий, организация работы ППС с обучающимися с ОВЗ и инвалидами предусматривается в электронной информационно-образовательной среде с учетом их индивидуальных психофизических особенностей.

Разработчик Доцент Е.В. Рассадина (фио)

Форма А Страница 22 из 22